An Approach Towards Validation of IPv4 and IPv6 Siblings

Minoo Rouhi

November 25, 2016

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich
Introduction & Motivation

Problem Statement & Research Questions

Methodology & Ground-truth

Evaluation of TCP Timestamp Fingerprinting

Large-scale Measurements
Introduction & Motivation

• **Sibling**: IPv4 and IPv6 address pair assigned to the same physical machine [1]
• Increasing trend in usage of shared IP infrastructure [1, 2]
• Application areas:
 – Understanding IPv6 and the Internet evolution
 – Understanding correlated failures and loopholes
 – IPv6 geolocation
 – IPv4 vs. IPv6 performance
Problem Statement & Research Questions

- Given a pair \((IP_4, IP_6) \), determine whether it is a Sibling
- A common DNS name does not always imply a Sibling relationship [3, 1, 2]
 - Content Distribution Networks
 - Load balancers
 - ...
- Fingerprinting techniques needed to discern Siblings
Methodology & Ground-truth

1. Acquiring the Ground-truth:
 - Siblings dataset
 - 458 true associations (Siblings)
 - Non-siblings dataset
 - Pairing unrelated IPv4 and IPv6 addresses

2. Evaluating fingerprinting methods against the Ground-truth
TCP Timestamp Fingerprinting

Introduction

Terminology:

- **Offset**: The time difference between the target and reference clock.
- **Skew**: The frequency difference between the target and the reference clock
 → First derivative of the offset
TCP Timestamp Fingerprinting

Introduction

Terminology:

- **Offset**: The time difference between the target and reference clock.
- **Skew**: The frequency difference between the target and the reference clock
 → First derivative of the offset

Objective:

- Fingerprint devices from their clock skew
TCP Timestamp Fingerprinting
First Order Filter using TCP Options Signature

- TCP options are almost always identical for Siblings
- Discriminating factors:
 - Presence of options and their order
 - Value of the window scale option
TCP Timestamp Fingerprinting
First Order Filter using TCP Options Signature

- TCP options are almost always identical for Siblings
- Discriminating factors:
 - Presence of options and their order
 - Value of the window scale option

✓ Eliminates $\approx 71\%$ of Non-siblings
✓ No false negative rate
TCP Timestamp Fingerprinting

Obtaining Offsets

Algorithm 1 Obtaining offsets

1: Probe IP pair
2: Store traces T_4 and T_6
3: for each $Packet_i \in T_4 \lor T_6$ do
4: Extract $TSval_i$ and $ArrivalTime_i$
5: $\Delta_i \leftarrow TSval_i - ArrivalTime_i$
6: $Offset_{set} \leftarrow (ArrivalTime_i, \Delta_i)$
7: end for
8: Plot offset trends from $Offset_{set}$
TCP Timestamp Fingerprinting

Observation Classes

![Graph 1: TCP Timestamp Fingerprinting](image1)

![Graph 2: TCP Timestamp Fingerprinting](image2)

![Graph 3: TCP Timestamp Fingerprinting](image3)

![Graph 4: TCP Timestamp Fingerprinting](image4)
TCP Timestamp Fingerprinting

Negligible Skew

- Skew is negligible
- Metric: $|\text{offset}_{\text{max}} - \text{offset}_{\text{min}}|$
- 1.6% of the Ground-truth
TCP Timestamp Fingerprinting

Constant Skew

- Skew is constant
- Metric: Robust Linear regression
- 3.2% of the Ground-truth
TCP Timestamp Fingerprinting

Variable Skew (Drift)

- Skew is variable
- Metric: Polynomial splines
- 95.2% of the Ground-truth
TCP Timestamp Fingerprinting

Polynomial Splines

1. Calculate splines
TCP Timestamp Fingerprinting

Polynomial Splines

1. Calculate splines
2. Map splines
TCP Timestamp Fingerprinting

Polynomial Splines

1. Calculate splines
2. Map splines
3. $\text{spline}_{\text{dist}} \leq \text{threshold} \rightarrow \text{Sibling}$
TCP Timestamp Fingerprinting

Polynomial Splines

\[\text{spline}_{\text{dist}} > \text{threshold} \rightarrow \text{Non-Sibling} \]
TCP Timestamp Fingerprinting

Reset and Adjustment

- Similar skew pattern is observed over different probes
- Metric: Polynomial splines
The Decision Algorithm

TCP options signature

Options1<2 mismatch

Options1<2 match

De-noise (three steps)

both non-linear trends

one linear trend

both linear trends

R^2^

R^2_b

Slope Sign
different

same

Slope Difference

Siblings

Non-Siblings

large R^2_a

Small R^2_a

Siblings

both trends with small dynamics

one trend with small dynamics

both trends with large dynamics

large slope_a

small slope_a

large dynamics_a

small dynamics_a

OTT range

OTT range_a

Fit and Map Splines

SplineDist (85-99th)

SplineDist (85-99th)

small dynamics and small curve distance

large dynamics and small curve distance

small dynamics and large curve distance

large dynamics and large curve distance

both trends with small dynamics

both trends with large dynamics

both linear trends

both non-linear trends

Unknown (negligible skew)
Large-scale Measurements

- 6.6 M domains from Alexa top 1 M, biz, com,
- 371 k unique sibling candidates
 - \(m:n\) relationship between domain and IP addresses
 - IP address pairs are frequently shared between several domains (\(\approx 33\%\))
- 22% confirmed siblings, 76% non-siblings and 2% unknown
 - low false positive rate
 - web hosters, CDNs, load balancers ...
Thanks for your attention!

Inferring Internet Server IPv4 and IPv6 Address Relationships.

[3] Kohno, Tadayoshi and Broido, Andre and Claffy, Kimberly C.
Remote Physical Device Fingerprinting.